Facing Cow Management Decisions with the New Cost of Production on Southeast Dairy Farms

Albert De Vries

Department of Animal Sciences
Topics

1. New cost of production
2. Cow management decisions
 - breeding, dry-off, culling
3. Marginal thinking
 - Feed cost example
4. Prediction of future milk prices
Prices Received, Soybeans, US

Dollars per Bu

Year

National Agricultural Statistics Service - Agricultural Prices, 08.29.2008
Feed cost / cwt milk

USDA-ERS - Monthly milk cost of production (09/05/2008)
Total operating cost / cwt milk

Feed costs
Veterinary and medicine
Bedding and litter
Marketing
Custom services
Fuel, lube, and electricity
Repairs
Other operating costs
Interest on operating capital

USDA-ERS - Monthly milk cost of production (09/05/2008)
Total operating cost / cwt milk

USDA-ERS - Monthly milk cost of production (09/05/2008)
Total allocated overhead cost / cwt milk

- Hired labor
- Opportunity cost of unpaid labor
- Capital recovery of machinery and equipment
- Opportunity cost of land (rental rate)
- Taxes and insurance
- General farm overhead

USDA-ERS - Monthly milk cost of production (09/05/2008)
Total allocated overhead cost / cwt milk

USDA-ERS - Monthly milk cost of production (09/05/2008)
Total cost / cwt milk

USDA-ERS - Monthly milk cost of production (09/05/2008)
Total cost and milk price / cwt milk

USDA-ERS & USDA-AMS (09/05/2008)
USDA milk-feed price ratio

“number of pounds of 16 percent protein-mixed dairy feed equal in value to 1 pound of whole milk”

http://future.aae.wisc.edu (09/05/2008)
Cow management decisions

- Breeding
- Dry-off
- Culling
Milk production, dry matter intake, feed efficiency

Days in milk

lbs/day

Milk

Dry matter intake

Feed efficiency
Income over feed cost / day

Milk sales ($22/cwt) - dry matter cost

Income over feed cost (IOFC) varies with days after calving, with different dry matter costs impacting the outcome. The graph shows four different dry matter costs: $8, $10, $12, and $14, each represented by a different line. The highest IOFC is observed in the early days after calving, with a peak at around 140 days for the $8 dry matter cost, and a peak at around 100 days for the $14 dry matter cost. As the days after calving increase, the IOFC decreases, reflecting the declining income over feed cost.
Relative IOFC / day

IOFC on day 305 is set to $0
Feed cost / cwt milk

Dry matter cost / 100 lbs

Days after calving
Break-even milk yield

Milk yield needed to pay for 42 lbs of dry matter

Diagram showing the relationship between milk yield and dry matter cost for different milk prices.

- $19 per cwt
- $22 per cwt
- $25 per cwt

Dry matter cost, $/100 lbs vs. Milk yield, lbs

Corrected
Higher feed cost

- Feed efficiency more important
 - Early part of lactation curve
 - Cows should spend more time in early lactation → early conception more important

- Higher break-even milk yield
 - Earlier production dry-off
 - Earlier culling open cows
Marginal thinking

- Feed cost example
Scenario 3:
Your Nutritionist Gives You Two Rations/Production Levels to Choose From:

<table>
<thead>
<tr>
<th>Milk Level</th>
<th>DMI (lbs)</th>
<th>TMR Cost/ lb</th>
<th>Feed Cost</th>
<th>Feed Cost/ Cwt</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 lbs</td>
<td>48.8</td>
<td>$0.12</td>
<td>$5.70</td>
<td>$7.13</td>
</tr>
<tr>
<td>90 lbs</td>
<td>53.1</td>
<td>$0.13</td>
<td>$6.91</td>
<td>$7.68</td>
</tr>
</tbody>
</table>

Milk is selling for $20/ cwt

Which one is more profitable?
Scenario 3:
Your Nutritionist Gives You Two Rations/Production Levels to Choose From:

<table>
<thead>
<tr>
<th>Milk Level</th>
<th>DMI (lbs)</th>
<th>TMR Cost/ lb</th>
<th>Feed Cost</th>
<th>Feed Cost/ Cwt</th>
<th>IOFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 lbs</td>
<td>48.8</td>
<td>$0.12</td>
<td>$5.70</td>
<td>$7.13</td>
<td>$10.30</td>
</tr>
<tr>
<td>90 lbs</td>
<td>53.1</td>
<td>$0.13</td>
<td>$6.91</td>
<td>$7.68</td>
<td>$11.09</td>
</tr>
<tr>
<td>10 lbs = $2.00</td>
<td>4.3</td>
<td></td>
<td>$1.21</td>
<td></td>
<td>$0.79</td>
</tr>
</tbody>
</table>

Although the actual feed cost AND feed cost/ cwt Milk is selling for $20/ cwt, The better choice here is the 90 lb production with the higher feed cost.

Average cost of production or cost/ cwt can me very misleading

Source: Fetrow, Overton, Eicker
Predicting future milk prices

- Accuracy of prediction of future uniform milk prices in Florida from Class III and IV futures markets

De Vries and Feleke, Journal of Dairy Science, accepted
F.O. 6 Uniform Milk Price

Uniform milk price is function of 17 inputs:

- Announced and advanced butter prices
- Product prices for cheese, butter, dry whey, non-fat dry milk
- Utilization of Class I, II, III, IV skim milk
- Utilization of Class I, II, III, IV butterfat
- Class I price differential
- Class III and Class IV cash prices

Prices and utilization announced every month by USDA
Class III, Predicted and Actual

- 6 mo ahead
- 3 mo ahead
- 1 mo ahead
- Actual

Month

$ / cwt

2003 | 2004 | 2005 | 2006
Prediction Method

- Class III and IV cash prices:
 - futures prices
- Announced butter prices, advanced butter prices, advanced Class III skim milk price, advanced Class IV skim milk price, advanced Class I butterfat price; function of:
 - futures Class IV price, last announced Class IV price, last announced Class III price, last announced butter price, last advanced butter price, advanced butter price
- Utilization skim milk, utilization butterfat:
 - Holt-Winters method (historical utilization)
Uniform Prices: Predicted and Actual

- **6 mo ahead**
- **3 mo ahead**
- **1 mo ahead**
- **Actual**

$ / cwt

Month

2003 2004 2005 2006
Tampa Uniform Price, Predicted - Actual, $/cwt
Class III and IV prices, butter prices, utilizations predicted
(2003-2006)

MAD = median absolute deviation: 1.482 median $ |x_i - \bar{x}|$
Tampa Uniform Price, Predicted - Actual, $/cwt
Class III and IV prices predicted; butter prices and utilizations assumed known (2003-2006)

MAD = median absolute deviation: 1.482 median |x_i - \tilde{x}|
Tampa Uniform Price, Predicted - Actual, $/cwt
Butter prices and utilizations predicted; Class III and IV prices assumed known (2003-2006)

MAD = median absolute deviation: 1.482 median |x_i - \bar{x}|
Conclusions

• Predicted uniform prices are increasingly inaccurate farther into the future.
 - Uncertainty is large even a few months ahead

• Majority of prediction error due to inability of CME futures market to predict Class III and IV cash prices accurately.
Thank You

Albert De Vries
devries@ufl.edu
(352) 392-5594