Economic Considerations of Sexed Semen on Your Dairy

Michael Overton
College of Veterinary Medicine
The University of Georgia
Athens, GA

Objectives for Today...
- General introduction to sexed semen
- Potential sources of value
- Basic criteria regarding use/selection of cows
- Early/expected results from its use
- Pitfalls or "watch outs" regarding its use

Traditional Breeding on Dairies
- Cows are bred for two primary reasons:
 - Initiate new lactation
 - Create female dairy calves for replacements
- National herd replacement rate is basically limited by the supply of heifers
 - ~33-37% of the national herd/year is replaced
 - Based on # of heifers entering the national herd
 - National herd size = constant
 - Supply of heifers determined by reproductive efficiency, death loss, and ratio of live females
With Sexed Semen
(Gender Enhanced Semen - GES)

There is a Potential to Produce More Female Calves

☐ However, we need more pregnancies to return cows to the next lactation than are needed to produce enough replacements

☐ Producing extra heifers, above and beyond the industry needs is not desirable

Concept of Sexing Semen Has Been Around for Years

☐ Variety of methods have been tried:
 ☐ Gender Specific Antibodies
 ☐ Centrifugation
 ☐ Free Flow Electrophoresis
 ☐ Flow Cytometry
 ☐ Oogal deflection and collection
 ☐ Only method with a proven track record

General Sorting Principles

☐ The X Chromosome is larger than the Y Chromosome

☐ X-bearing sperm have 3.95% more DNA

☐ A fluorescent dye that binds to DNA is used to measure DNA content

☐ Fluorescence in response to laser light is used to determine gender

☐ Currently, one company has GES on the market, but others are potentially coming
Potential Sources of Value for Sexed Semen:

- Can help ensure an adequate number of replacements
- Can improve rate of genetic improvement by selecting on both cow and bull side
- Increased opportunity to sell poor-doing heifers
- Potentially reduced risk of dystocia (more heifers vs bulls)
- Decreased risk of freemartins (more heifer twins vs bull-heifer co-twins)
- Early adopters may be able to capitalize on current high heifer prices

But...There are Important Considerations

- We do NOT want every cow to produce a heifer calf
 - Extra cost involved with using sexed semen
 - Fertility issues with CURRENT technology
 - Genetic merit considerations
 - Excess heifers (above industry needs) have less value
 - Lower value for the beef / veal industries
- Also, RISKY if you're only trying to capture value from current high heifer prices

Current Products of Dairy Breeding

- Heifer calves
 - Typically, all are retained and raised as future replacements
 - Little, if any, selective pressure applied due to demand and generally, low reproductive efficiency
- Bull calves
 - Most enter the dairy-beef market
 - Veal calves
 - Bull calves
 - Mixed feeds
- Freemartins
Potential "Products" from Dairy Pregnancies
Using GES Semen

- Female GES-derived replacement heifers
 - Used as replacements
 - Sold as replacements
- Conventional AI or bull-derived replacement heifers
 - Used as replacements
 - Sold as replacements
- Bull calves
 - Commercial bull calves for beef (veal or feeder)
 - Higher-end dairy bull for breeding purposes (AI or natural service)
- Crossbred calves (male GES or beef bull)
 - Beef/dairy crossbred heifer calves
 - Freemartin calves

Calculating Returns from GES Semen

1. Wet calf value based on the calf value at birth
2. Sell the bull calf, raise the heifer and sell as a springer
3. Sell the bull calf, raise the heifer and keep her, and produce milk

All are very different modeling approaches

Important Considerations...

- What is the expected sex ratio?
- What is fertility of the product?
- What is the cost of the product?
- On what animals will it be used?
Expected Sex Ratio

- The percent females obtained by GES breeding will have a statistical variation around ~ 85%.
- For a given series of breedings, some dairies will get 85%, some more, and some less
 - It is like rolling a die
 - 1, 2, 3, 4, and 5 are female and 6 is a male
 - 83% chance of getting a 1, 2, 3, 4, or 5
 - Only 17% chance of getting a 6 (male)
- There’s a chance you’ll get more than your “fair share” of 6s
- We all need to understand this concept!

One random outcome of “rolling a die” 20 times per dairy

Reduced Fertility is Being Reported with Current Technology

- Conception rates greatly decreased compared to routine AI
Actual Data from 1 Western Dairy
541 breedings (with known outcomes)

<table>
<thead>
<tr>
<th>CR</th>
<th>#Preg</th>
<th>#Open</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>68</td>
<td>123</td>
<td>CR's vary across sires</td>
</tr>
<tr>
<td>26</td>
<td>24</td>
<td>67</td>
<td>Overall, 38% CR</td>
</tr>
<tr>
<td>40</td>
<td>49</td>
<td>52</td>
<td>Normal, non-sexed</td>
</tr>
<tr>
<td>31</td>
<td>11</td>
<td>24</td>
<td>1st Service CR = 59%</td>
</tr>
<tr>
<td>40</td>
<td>16</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>17</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>20</td>
<td>21</td>
<td>36% drop (21 points)</td>
</tr>
<tr>
<td>205</td>
<td>336</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results are Consistent with Reports from NY
(Lactation = 0)

<table>
<thead>
<tr>
<th>Farm</th>
<th>Baseline CR</th>
<th>Sexed Semen CR</th>
<th>%drop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55</td>
<td>39</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>41</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>66</td>
<td>51</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>59</td>
<td>45</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>68</td>
<td>39</td>
<td>43</td>
</tr>
</tbody>
</table>

Overall, ~30% drop

What is the Cost of Using Sexed Semen

- Typically, $25-45 premium/unit of semen
- Example: Western producer
 - Blend of proven and young sire, sexed $40
 - Normal blend price for heifers $5-10
Which Animals Should We Use Sexed Semen In?

- Using current technology on mature cows would be painful:
 - E.g. 1st-service CR of 33% dropping to ~21% and using it only during the first 21-day breeding cycle
 - Extra value of heifers produced overshadowed by loss in PR

![Distribution of Sexed Semen Value at First Cycle in Mating Cows of $15,000 (log = 10)](image)

Use in Virgin Heifers

- Producers often start breeding virgin heifers earlier to try and compensate for decreased CR
 - Don't want to run out of time

- Can lead to other problems:
 - Increased risk of dystocia
 - More stillbirths
 - Premature culling of fresh heifers

Reports of Higher Risk of Stillbirths

- Western herd example
 - ~50% higher risk of stillbirths

- Avg of 5 New York herds
 - ~25% higher risk

- Some potential reasons:
 - Producers breeding heifers earlier than normal
 - Limited availability of sires
 - Non-cycling sires
 - Sires sent to males in TMR (can never come home... may not send the best sire?)
Today... Estimate Value of Current Technology on Virgin Heifers (Value of Wet Calves)

- Spreadsheet model based on wet calf prices (Chambers and Wicken)
- Examine returns expected from current technology used at first service or first 2 services
- Identify pitfalls of relying only on wet calf prices

Spreadsheet model assumptions:
- Calving at 32%
- $35 premium for SS
- Higher risk of stillbirths
- 8 potential breeding cycles
- Dems

Modeling Results (Lact = 0):
Effect of Calf Price Differential

- Breakeven price differential for wet calves (using the assumptions of the model, $35 premium for SS):
 - Breeding for 1st service only: $-200
 - Breeding for 1st 2 services only: $-260

- As the value of bull calves increases, the breakeven price differential becomes greater
 - Ex: $750 bull: 1st only: $-100, 1st 2nd: $-255
 - $200 bull: 1st only: $-220, 1st 2nd: $-275

Modeling Results (Lact = 0):
Effect of Semen Premium Cost Changes

- Breakeven price differential for wet calves (using the assumptions of the model and $100 bulls)

<table>
<thead>
<tr>
<th>Sexed Semen Premium</th>
<th>$25</th>
<th>$30</th>
<th>$35</th>
<th>$40</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Cycle Only</td>
<td>$165</td>
<td>$180</td>
<td>$200</td>
<td>$215</td>
</tr>
<tr>
<td>Cycle 1 and 2</td>
<td>$220</td>
<td>$240</td>
<td>$260</td>
<td>$280</td>
</tr>
</tbody>
</table>
However, **IF** Fertility Issues are Addressed...

- Huge opportunity to use in lactating cows
- Potential to capture value of improved genetic merit
- Mature cows provide greater genetic merit information (more reliable)

Modeling Option 3:
Sell the Bull Calf, Raise and Milk Heifers

- **Modeling project:**
 - John Petrow
 - Mike Overton
 - Ken Leslie
 - Steve Eicker
 - Albert deVries
 - Gary Rogers

- A large source of potential benefit is from genetic merit gain
- Ability to make progress by selecting from both male and female sides

![Diagram showing genetic merit in subpopulations with GES breeding]
What is the Best Mix of Breedings?

- Given the "products" of each type of breeding, the "profit" of those breedings can be calculated.
 - Herd's profit depends on:
 - Herd's genetic merit (value of the heifers produced).
 - Proportion of the population that is bred with female G6S.
 - The profit of a female G6S breeding is not a fixed number:
 - If you breed only the very top cows to female G6S, you get a few very valuable heifers.
 - If you breed most of the herd with female G6S, you don't gain much advantage per heifer, but you get more heifers.

Spreadsheet Model of the Value of Genetic Gain

The optimum breeding mix depends on a lot of factors specific to the dairy.

Economics of Female G6S:
One Example 1,000 cows:
Only Female G6S and Conventional AI

This scenario is meant only to illustrate the relationship. Actual profits and optimal breeding mixes depend on many factors.
General Concepts of Choosing the Best Breeding Mix for a Dairy

- Herds with better genetics would tend to use more female GES
- More of the heifers produced would be of high merit and worth having (or selling)
- Herds with good information about the genetics of their cows (and particularly their growing heifers) will have a competitive advantage in the use of female GES
- Herds that want to ensure full replacements will use more female GES
- Expanding herds will enjoy some biosecurity advantages

Comments Regarding Expansion...

- Counting on GES alone is a bad approach for herd expansion!
- Need to grow in discrete chunks
 - i.e., the size of the next free-stall barn/pen
- New barns need to be filled rapidly.
- Expansion herds still need to buy cows

A Potential Watch-out Re: GES and Extra Heifers!

- Will the dairy have the capacity for additional calves?
 - Hutches
 - Pens
 - Labor
 - CAPITAL
 - etc
Concluding Thoughts...

- GES may turn out to be a major new tool for the dairy industry
 - Potential to dramatically shift the way cows are bred; the fertility problems can be addressed
 - Potential to improve both quality and availability of heifers

- Be careful with the current technology, weigh risks vs potential rewards
 - Lighter cost versus delayed return
 - Use caution when estimating expected returns
 - High calf price may offset with more heifers available
 - Don't forget about current issues
 - Lower fertility and increased dystocia/et al.

Thanks For Your Attention!

New Contact Info:
Michael Overton, DVM, MPVM
University of Georgia
College of Veterinary Medicine
Department of Population Health
981 D. W. Brooks Drive
Athens, GA 30602
moverton@uga.edu